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Abstract

In this paper we present the main conceptual ingredients and the current state of development of the new solver

QUADFLOW for large scale simulations of compressible fluid flow and fluid–structure interaction. In order to keep the

size of the discrete problems at every stage as small as possible, we employ a multiresolution adaptation strategy that

will be described in the first part of the paper. In the second part we outline a new mesh generation concept that is to

support the adaptive concepts as well as possible. A key idea is to understand meshes as parametric mappings deter-

mined by possibly few control points as opposed to store each mesh cell separately. Finally, we present a finite volume

discretization which again is to support the adaptation concepts. We conclude with numerical examples of realistic

applications demonstrating different features of the solver.

� 2003 Elsevier Inc. All rights reserved.
1. Introduction

Due to the increasing computer power more and more realistic and consequently more complex models

have become tractable by numerical simulation. Studying the interaction of aerodynamics and structural

dynamics is a typical example. Here several severe obstructions, such as time-dependency of the involved

processes, varying complex geometries and the coupling of physical regimes with different characteristic
features come together. In order to resolve a typically singular behavior of the solution meshes with several

millions of cells are required. However, improved hardware or purely data oriented strategies such as

parallel computing are not sufficient to overcome the arising difficulties. As important and necessary these
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aspects may be they have to be complemented in the long run by mathematical concepts that aim at

minimizing in the first place the size of arising discrete problems.

This paper summarizes some recent attempts in this direction. We present an integral concept for de-
signing a finite volume solver for compressible flow computations. The three main components of this new

solver QUADFLOW consist of (i) a standard finite volume discretization for arbitrary grid topologies, (ii) a

block-structured grid generation using parametric mappings based on B-splines and (iii) a local grid ad-

aptation based on a local multiscale analysis. These tools are appropriately adjusted to each others needs.

Here the core ingredient is the adaptation strategy that is based on a mathematically well-founded concept.

The ultimate goal of the present work is to verify that this concept is no longer confined to academic

problems on Cartesian grids only but has become mature. In particular, it can be employed for the in-

vestigation of problems arising, for instance, in aerodynamics.
In the literature, several adaptive strategies have been discussed or are under current investigation. A

standard strategy is to base local mesh refinements on local indicators which are typically related to gra-

dients in the flow field, see [13,14], or local residuals, see [48,66,67]. Although these concepts turn out to be

very efficient in practice they offer no reliable error control. For this purpose, a posteriori estimates have

been derived which aim at equilibrating local errors. So far, this type of error estimator is only available for

scalar problems, see [50]. In the present work, however, we employ recent multiresolution techniques. The

starting point is a proposal by Harten [45] to transform the arrays of cell averages associated with any given

finite volume discretization into a different format that reveals insight into the local behavior of the so-
lution. The cell averages on a given highest level of resolution (reference mesh) are represented as cell

averages on some coarse level where the fine scale information is encoded in arrays of detail coefficients of

ascending resolution. This information is essentially used in Harten�s original strategy to gain computa-

tional time by avoiding expensive flux evaluations in regions where the solution is smooth. Instead cheap

finite differences are employed in major parts of the domain. The solution remains within the same accuracy

as the reference scheme, i.e., the scheme on the finest computational mesh that uses the expensive flux

evaluation throughout the entire domain. Successful implementations of this strategy have been carried out

for two-dimensional Cartesian meshes [15,16,26,27,62], curvilinear meshes [33] and unstructured meshes
[2,17,30]. However, since one works still on a uniform mesh the computational complexity stays propor-

tional to the number of cells on the finest grid which in 3D computations with the above objectives is

prohibited.

In contrast to this, the detail coefficients will be used here to create locally refined meshes on which the

discretization is performed. Of course, the crux in this context is to arrange this procedure in such a way

that at no stage of the computation there is ever made use of the fully refined uniform mesh. A central

mathematical problem is then to show that the solution on the adapted mesh is of the same accuracy as the

solution on the reference mesh. This genuine adaptive approach has been presented in [42] and has been
investigated in [31]. A self-contained account of the adaptive concept for conservation laws can be found in

[59]. By now the new adaptive multiresolution concept has been employed by several groups with great

success to different applications, see [23,32,58,63].

The adaptive concept is based on a hierarchy of meshes. This requires a new grid generation strategy.

Accepting the Navier–Stokes equations as the model of choice we give preference to quadrilateral and

hexahedral cells that still facilitate best boundary fitted anisotropic meshes. Local refinement gives rise to

meshes of quadtree and octree type, respectively. A key idea is to represent such meshes as parametric

mapping from the computational domain into the physical domain. In this way one overcomes the re-
striction to Cartesian meshes as employed in the literature mentioned above. Such mappings can be realized

using well established concepts from computer aided geometric design (CAGD), see for instance [19,39]. To

retain sufficient geometric flexibility this is combined with block structuring.

Finally, one needs a discretization scheme that meets the requirements of the adaptation concept and fits

well with the mesh generation. The adaptive method crucially depends on the assumption, that the fluxes of
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the underlying discretization are conservative. Furthermore, to avoid complicated mesh management within

each block and to keep the discretizations of the individual blocks as independent as possible and, in

particular, to avoid global geometrical constraints, we insist on meshes with hanging nodes. Both re-
quirements are met by the development of a finite volume scheme that can cope, in particular, with fairly

general cell partitions.

We organize the remainder of this paper as follows: Section 2 gives a short description of the governing

equations as used in the present work. Section 3 is the essential part of the paper describing the multiscale

analysis and the grid adaptation algorithm. Section 4 is concerned with the representation and generation

of parametric meshes using B-spline methods. Section 5 offers a self-contained account of the discretization

scheme including the realization of spatial second order, the choice of limiters, the treatment of convective

and viscous fluxes and the time integration. In Section 6 we present several applications to well-known fluid
dynamical test cases that highlight the features of the whole flow solver. We conclude this paper in Section 7

with some remarks on future developments.
2. Governing equations

In the present study, laminar viscous fluid flow is described by the Navier–Stokes equations for a

compressible gas. In order to solve problems in time dependent domains, including moving boundaries, we
consider the governing equations in its arbitrary Lagrangian Eulerian (ALE) formulation. Neglecting body

forces and volume supply of energy, the conservation laws for any control volume V with boundary oV and

outward unit normal vector n on the surface element dS � oV can be written in integral form as:

o

ot

Z
V ðtÞ

udV þ
I
oV ðtÞ

FcðuÞ
�

� FdðuÞ
�
ndS ¼ 0: ð1Þ

To complete the posed problem initial values uðx; t0Þ ¼ u0ðxÞ, x 2 V and boundary conditions

uðx; tÞjoV ¼ Bðx; tÞ, x 2 oV are to be prescribed.

Here u ¼ ð., .v, .etotÞT denotes the vector of the unknown conserved quantities and Fc and Fd represent

the convective flux including pressure and the diffusive flux function, respectively:

Fc ¼
.vr

.vrsvþ p I
.etotvr þ pv

0
@

1
A; Fd ¼

0

Tv

vTv � q

0
@

1
A; ð2Þ

where . denotes the density, p the static pressure, v the velocity vector of the fluid and etot the total energy.
The motion of the grid is considered by the convective fluxes, where vr ¼ v� _x expresses the relative ve-

locity between the fluid and the grid velocity _x. The symbol s means the dyadic product. The viscous stress

tensor Tv for an isentropic Newtonian fluid is defined as

Tv ¼ l grad v
�

þ grad vð ÞT
�
� 2

3
l div vð ÞI: ð3Þ

Heat conduction is modeled by Fourier�s law q ¼ �jgradT , where the thermal conductivity is assumed
as j ¼ cpl=Pr, with Prandtl number Pr ¼ 0:72. The variation of the molecular viscosity l as a function of

temperature is determined by the Sutherland formula. The static pressure is related to the specific internal

energy according to the equation of state for a perfect gas p ¼ .ðc� 1Þðetot � 1=2jvj2Þ, where c is the ratio of

specific heats, which is taken as 1.4 for air.
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3. Grid adaptation concept

In this section we outline the grid adaptation concept. It is based on a multiscale analysis of an array of
cell averages. For this purpose we first summarize the multiscale setting. Finally we explain how to perform

an adaptive mesh refinement employing the multiscale analysis.
3.1. Multiscale setting

A finite volume discretization typically works on a sequence of cell averages. In order to analyze the local

regularity of the data we employ the methodology developed by Dahmen et al. [25] which is based on

biorthogonal wavelets and stable completions. In view of stability investigations, function spaces are in-
troduced in order to benefit from functional analytic arguments. This approach may be seen as a natural

generalization of Harten�s discrete framework [4,5,46]. It provides the analytical tools, e.g., inverse esti-

mates, with that rigorous estimates of the perturbation error can be derived, see [31,59]. From a discrete

point of view both concepts are directly related as has been shown in [43].
3.1.1. Hierarchy of meshes

First of all we introduce a sequence of grids Gj :¼ fVj;kgk2Ij ; j ¼ 0; . . . ; L, where the index set Ij repre-
sents the enumeration of the cells corresponding to the grid Gj. The coarsest grid is indicated by j ¼ 0 and
the finest grid by j ¼ L, respectively. A simple example is shown in Fig. 1 where a coarse grid is successively

refined with increasing refinement level. This sequence is called a nested grid hierarchy, if (i) each grid

represents a partition of the computational domain X and (ii) each cell Vj;k can be decomposed into cells

Vjþ1;r on the next finer resolution level determined by the index set Mj;k � Ijþ1.

Note that the framework presented here is not restricted to this simple configuration but can also be

applied to unstructured grids and irregular grid refinements. Furthermore we assume without loss of gen-

erality that the computational domain and, hence, the grid hierarchy is time-independent throughout this

section. Since the data analysis is performed by means of cell averages corresponding to a fixed but ar-
bitrary time level, this is no constraint of the concept. In case of time-varying boundaries the grid hierarchy

has to be adjusted after each time step.

Relative to the partitions Gj we introduce the so-called box function

~uj;kðxÞ :¼
1

jVj;kj
vVj;k ðxÞ ¼

1=jVj;kj; x 2 Vj;k;
0; x 62 Vj;k;

�
ð4Þ

defined as the L1–scaled characteristic function with respect to Vj;k. By jV j we denote the volume of a cell V .
Then the cell average of a scalar, integrable function u 2 L1ðXÞ can be interpreted as an inner product, i.e.,

ûj;k :¼ hu; ~uj;kiX with hu; viX :¼
Z
X
uvdx: ð5Þ

Obviously the nestedness of the grids as well as the linearity of integration imply the two-scale relations
Fig. 1. Sequence of nested grids.
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~uj;k ¼
X
r2Mj;k

jVjþ1;rj
jVj;kj

~ujþ1;r and ûj;k ¼
X
r2Mj;k

jVjþ1;rj
jVj;kj

ûjþ1;r: ð6Þ

The goal is to transform these data into a different format of cell averages corresponding to a sequence of

resolution levels. This will be motivated by a simple univariate example.

3.1.2. Motivation: A univariate example

Haar basis. We now consider the unit interval X ¼ ½0; 1� where the grid hierarchy is determined by a

uniform dyadic partition of ½0; 1�, i.e., Vj;k ¼ 2�j½k; k þ 1�, k 2 Ij :¼ f0; . . . ; 2j � 1g. Note that the refinement

sets are Mj;k ¼ f2k; 2k þ 1g. Then the L1-scaled box function (4) has the form

~uj;kðxÞ ¼ 2j v½2�j k;2�j ðkþ1Þ�ðxÞ;

and the two-scale relations (6) read

~uj;k ¼
1

2
ð~ujþ1;2k þ ~ujþ1;2kþ1Þ and ûj;k ¼

1

2
ðûjþ1;2k þ ûjþ1;2kþ1Þ: ð7Þ

Introducing the box wavelet ~wj;k and the details dj;k as

~wj;k :¼
1

2
ð~ujþ1;2k � ~ujþ1;2kþ1Þ; dj;k :¼ hu; ~wj;ki½0;1� ¼

1

2
ðûjþ1;2k � ûjþ1;2kþ1Þ; ð8Þ

any fine scale box function can be expressed by means of the box function ~uj;k and the box wavelet ~wj;k, i.e.,

~ujþ1;2k ¼ ~uj;k þ ~wj;k; ~ujþ1;2kþ1 ¼ ~uj;k � ~wj;k: ð9Þ

This is illustrated in Fig. 2. Thus we can compute fine scale averages from coarse scale ones and details,

i.e.,

ûjþ1;2k ¼ ûj;k þ dj;k; ûjþ1;2kþ1 ¼ ûj;k � dj;k: ð10Þ

To simplify notation we define the vectors Uj :¼ ð~uj;kÞk2Ij and ~Wj :¼ ð~wj;kÞk2Ij . Later we will use this

notation also in the sense of a collection of functions.

Biorthogonal wavelets. We now introduce a dual system by the functions

uj;k :¼ 2�j ~uj;k ¼ v½0;1�ð2j � �kÞ; wj;k :¼ 2�j ~wj;k;

or in vector form Uj :¼ 2�j ~Uj and Wj :¼ 2�j ~Wj. These are the L1-normalized counterparts of the box

function and the box wavelet, respectively. Obviously, the duals also satisfy two-scale relations of the form
(7)–(9). From this we infer that ~Uj [ ~Wj and Uj [Wj are biorthogonal, i.e.,

hUj; ~Uji½0;1� ¼ hWj; ~Wji½0;1� ¼ I ; hUj; ~Wji½0;1� ¼ hWj; ~Uji½0;1� ¼ 0; ð11Þ
Fig. 2. Box function and box wavelet.
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where we use the notation hH;Ui :¼ ðhh;uiÞh2H;u2U and I denotes the unity matrix and 0 the zero matrix,

respectively. The basis functions Uj and Wj are always referred to as primal scaling functions and primal

wavelets, respectively. Analogously, the basis functions ~Uj and ~Wj are called the dual scaling functions and
dual wavelets, respectively.

Change of basis. By means of the box function and the box wavelet as well as their L1-normalized

counterparts we now introduce a function on the unit interval that is naturally related to the array of cell

averages. To this end we consider a function u 2 L1ð½0; 1�Þ. Then the projection of u onto piecewise con-

stants with respect to the refinement level j is determined by

uj :¼
X
k2Ij

hu; ~uj;ki½0;1� uj;k ¼: UT
j ûj: ð12Þ

Equivalently the function uj can be represented by

uj ¼ UT
j�1 ûj�1 þWT

j�1 dj�1; ð13Þ

because the two-scale relations realize a change of basis and, in particular, the systems Uj [Wj and ~Uj [ ~Wj

are biorthogonal. This representation motivates that the details can be interpreted as the update when

progressing to a higher resolution level.

Cancellation property. We now have to explain why the representation (13) is preferable to (12) for our

purposes. To this end, we verify that the details become small when the underlying function is smooth. First
of all, we conclude from (8) and (4) that

h1; ~wj;ki½0;1� ¼ 0:

Since the box wavelets are L1-normalized, i.e., k~wj;kkL1ð½0;1�Þ ¼ 1, we deduce

jdj;kj6 inf
c2R

jhu� c; ~wj;ki½0;1�j6 inf
c2R

ku� ckL1ðVj;kÞ 6C 2�j ku0kL1ðVj;kÞ; ð14Þ

i.e., the details decay with a rate at least of 2�j provided the function u is differentiable. Hence the details

may become small with increasing refinement level provided that the gradient of u is bounded. This mo-

tivates to neglect all sufficiently small details in order to compress the original data such that we control the

loss of accuracy. In order to realize higher compression rates it will be convenient to improve the decay 2�j.

For this purpose not only constants have to be canceled by the wavelet ~wj;k but also all polynomials p of a

fixed higher degree, i.e., hp; ~wj;ki½0;1� ¼ 0. This can be achieved by means of higher order biorthogonal

systems instead of piecewise constants, see [29].
3.1.3. Multiscale transformation

The ultimate goal is to transform an array of cell averages corresponding to a finest uniform discreti-

zation level into a different format in order to compress data. This is achieved by means of a change of

basis. For this purpose we introduce the vectors

ûj :¼ ðûj;kÞk2Ij and d j :¼ ðdj;kÞk2Ij ;

where the averages and the details are determined by functionals of a function u 2 L1ðXÞ, i.e.,

ûj;k :¼ hu; ~uj;kiX and dj;k :¼ hu; ~wj;kiX. Note that in the multidimensional case there is not only one detail

related to a cell Vj;k as in the univariate example. In the multivariate case the number of wavelet types
corresponds to the number of subcellsMj;k reduced by one for the box function, i.e., #Mj;k � 1. For readers

who are not familiar with multivariate wavelets we summarize the wavelet construction for a Cartesian grid

hierarchy, see Appendix A. For sake of simplicity we suppress the wavelet type in the following but keep in

mind that dj;k and ~wj;k, respectively, represent a sequence of details and wavelet functions. According to (7)
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and (10) we obtain two-scale relations for the coefficients inherited from the two-scale relations of the box

functions and the wavelet functions. These can be written in vector–matrix representation as

ûjþ1 ¼ G j
ûj
dj

� �
;

ûj
d j

� �
¼ M jûjþ1; ð15Þ

where G j and M j denote the mask matrices of the filter coefficients of ~uj;k,
~wj;k and ~ujþ1;k, respectively, see

[59]. Applying these relations iteratively, see Fig. 3, the array ûL of cell averages on level L can be de-

composed into a sequence of coarse scale cell averages û0 and details d j, j ¼ 0; . . . ; L� 1. We refer to this

transformation as multiscale transformation. It is reversed by the inverse multiscale transformation. If there

is a biorthogonal system U0 [W0[; . . . ;[WL�1 to the multiscale basis ~U0 [ ~W0[; . . . ;[ ~WL�1, then the mul-

tiscale transformation realizes the change of basis, i.e.,

uL :¼ UT
L ûL ¼ UT

0 û0 þ
XL�1

j¼0

WT
j d j: ð16Þ

Here uL is the projection of any function u 2 L1ðXÞ onto the space spanned by the basis UL. Note that we

will actually construct only the bases ~Uj and ~Wj that are dual in the above sense to process the cell averages.

The corresponding primal bases will enter only the analysis but will never be needed explicitly for algo-
rithmic realizations. At this point we emphasize that the existence of a primal wavelet basis is essential for

proving the reliability of the adaptive finite volume scheme. For instance, we need inverse estimates, see

[28], which are not directly accessible in Harten�s discrete framework.

3.2. Grid adaptation

We will now summarize the six steps of the local grid refinement procedure, namely, (i) local multiscale

transformation, (ii) thresholding, (iii) prediction, (iv) grading, (v) local grid refinement and (vi) local inverse
multiscale transformation. Here the ultimate goal is to provide an algorithm that can be realized with an

optimal complexity, i.e., the number of floating point operations is proportional to the number of cells in

the adaptive grid. In particular, we never access to the finest mesh.

Since the grid adaptation tool is supposed to dynamically adapt the mesh to an underlying flow field, we

start with data corresponding to a certain time step n. At this time step the locally refined grid is char-

acterized by the index set Gn
L;e � fðj; kÞ; k 2 Ij; j ¼ 0; . . . ; Lg, i.e.,

X ¼
[

ðj;kÞ2Gn
L;e

Vj;k;

see, for instance, Fig. 4. It is required that the set Gn
L;e has the structure of a graded tree, i.e., neighboring

cells differ at most by one level of refinement. The grid is provided with cell averages fûnj;kgðj;kÞ2GL;e
.

Local multiscale transformation. In a first step we perform a multiscale analysis of the data at hand. For

this purpose we proceed level by level from fine to coarse similar to (7) and (8). Note that the two-scale

transformation is performed locally only for the indices corresponding to the adaptive grid instead of the

full levels. In particular, applying the local two-scale transformation can be interpreted as a successive
Fig. 3. Multiscale transformation.
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coarsening of the grid where fine-grid cells are agglomerated to a coarse-grid cell and the difference in-

formation is stored by the detail coefficients.

Thresholding. The idea is simply to discard all coefficients dj;k that fall in absolute value below a certain
threshold. For this purpose, we introduce the index set

DL;e :¼ ðj; kÞ; jdj;kj
�

> ej; k 2 Ij; j 2 f0; . . . ; L� 1g
	
;

corresponding to what will be referred to as significant details. Here ej ¼ 2j�Le is a level-dependent threshold
value which is smaller on coarser levels. The choice of the threshold parameter e is discussed in [59]. The

ideal strategy would be to balance the discretization error of the reference scheme on the uniform finest grid

with the perturbation error introduced by the thresholding. Note that the thresholding procedure is slightly

modified for vector-valued functions arising in systems of conservation laws. Here we determine for each
conserved quantity its absolute global maximum and scale the corresponding details by that. Then a cell is

refined if there is at least one significant scaled detail corresponding to at least one of the conserved

quantities.

Prediction. So far the multiscale analysis does not take into account the underlying problem, namely, the

evolution equations. The current prediction step plays the role of an interface between the data analysis and

the problem at hand by which the data are produced. To perform the evolution step, we have to determine the

adaptive grid on the new time level. Since the corresponding averages, respectively details are not yet avail-

able, we have to predict all details on the new time level nþ 1 that may become significant due to the evolution
by means of the details on the old time level n. In order to guarantee the adaptive scheme to be reliable in the

sense that no significant future feature of the solution is missed, the prediction set ~Dnþ1
e has to satisfy

Dn
L;e [Dnþ1

L;e � ~Dnþ1
L;e ; ð17Þ

where, of courseDnþ1
L;e is not known at the old time level. In [45] Harten suggests a heuristic approach taking

into account that (i) details in a local neighborhood of a significant detail may also become significant within

one time step due to the finite speed of propagation and (ii) gradients may become steeper causing significant

details on a higher refinement level due to the developing of discontinuities. So far Harten�s approach could
not be rigorously verified to satisfy (17). However, a slight modification of Harten�s prediction strategy has

recently been shown to lead to a reliable prediction strategy in the sense of (17), at least for a certain class of

explicit finite volume schemes applied to one-dimensional scalar conservation laws on uniform dyadic grids as

base hierarchies, see [31]. So far an analogue for implicit schemes is not available yet.

Grading. In order to perform the grid adaptation procedure level by level we need that the index set of

significant details corresponds to a graded tree, i.e., the levels of neighboring cells differ at most by one.

Since the sets DL;e and Dnþ1
L;e , respectively, are in general not graded, we have to apply in addition a grading

procedure. This will slightly inflate the index set of significant details but has so far been observed not to
spoil the complexity reduction in any significant way. In fact, from the nature of singularities occurring in
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flow computations one expects the distribution of significant wavelet coefficients to exhibit at least nearly

tree structure. If a high level wavelet overlaps a discontinuity this will be seen also by its coarser ancestors in

the same region. For details on the grading procedure we refer to [59].

Grid adaptation. Then we exploit the inflated set ~Dnþ1
L;e to determine an associated index set Gnþ1

L;e which

characterizes the adaptive grid at the new time level. The index set Gnþ1
L;e is initialized by all indices of the

coarsest discretization. Then, traversing through the levels from coarse to fine we proceed as follows: if

ðj; kÞ 2 ~Dnþ1
L;e then the cell Vj;k is locally refined, i.e., the index ðj; kÞ is removed from Gnþ1

L;e and the indices of

the subcells on the finer level are added to Gnþ1
L;e . Finally we obtain the locally adapted grid which naturally

corresponds to the leaves of the graded tree of significant details. In Fig. 5 this procedure is described

schematically. We note that the locally adapted grid naturally corresponds to the leaves of the graded tree

of significant details characterized by the shaded cells.

Local inverse multiscale transformation. By the previous step the grid has locally changed due to local

refinement and coarsening. In order to determine the cell averages fûnj;kgðj;kÞ2Gnþ1
L;e
, we employ a local inverse

multiscale transformation similar to (10) interrelating the local cell averages fûnj;kgðj;kÞ2Gn
L;e
and the significant

details fdn
j;kgðj;kÞ2DL;e

. Again we proceed level by level from coarse to fine where we locally replace a

cell average on the coarse scale by the cell averages of its subcells. This is done whenever there is a sig-

nificant detail associated to this coarse cell in ~Dnþ1
L;e . Note that the computation of these cell averages can be

simultaneously determined when performing the grid adaptation.
4. Mesh generation

4.1. Parametric meshes

The multiscale setting outlined in Section 3 is based on a hierarchy of nested grids. From this point of

view the most natural way to discretize the flow domain would be to employ adaptive Cartesian grids. On

the other hand it is widely accepted that boundary conforming meshes are preferable for the discretization

of viscous flows because they facilitate best the generation of anisotropic grid cells that are necessary for a

stable and accurate resolution of boundary layers. In this approach one has to observe, however, that

different levels of discretization by hexahedral cells do not result in a hierarchy of nested grids, since at least
at a curved boundary the fine grid points do not lie on the faces of the coarse grid cells. Indeed it can be

shown that the notion of a nested grid hierarchy is equivalent to the requirement that the grid can be

described analytically by an invertible parametric mapping from a logical space to the physical domain, see

Fig. 6.



Fig. 6. Parametric mappings.
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In this setting grid cells are the images of the corresponding cells in logical space. Grid refinement can be
interpreted simply as function evaluation. Furthermore the grid generation process can completely be

separated from the discretization process because the grid generator needs only to provide a (possibly

sparse) representation of the grid function. In particular, this is convenient in the case of moving grids.

The main costs of this method stem from the fact that the cells may have curved edges now. This

complicates the computation of some geometric quantities that are needed by the finite volume scheme, for

instance, cell volumes and centroids. They have to be computed accurately using quadrature formulas.

4.2. B-spline-representations

For the representation of the curvilinear coordinate systems we use patches of tensor product B-splines.

In the above terminology this means that we choose the unit cube as logical space and in order to enhance

the flexibility embed several of such mappings into a multiblock concept. B-splines seem to be a very

appropriate tool for this task, because they possess excellent approximation properties. Modeling with B-

splines is intuitive and the evaluation of B-splines is fast and numerically stable. Indeed, configuration data

is frequently given in Spline (or NURBS) form, though this data generally has to undergo a post-processing

before it can be used for a numerical simulation. For references on splines we refer to [34,61].
For i ¼ 0; 1; . . . ;N we denote with Ni;p;T the ith normalized B-spline of order p with respect to the knot

vector T . Here T ¼ ðtiÞNþp�2

i¼0 is a non-decreasing and non-stationary sequence of real numbers, i.e., ti 6 tiþ1

and ti < tiþp. The B-splines are piecewise polynomials of degree p � 1 and can be defined by the recursion

Ni;1;T ðtÞ ¼ v½ti;tiþ1ÞðtÞ ¼
1 if ti 6 t < tiþ1;
0 otherwise;

�
ð18Þ
Ni;p;T ðtÞ ¼
t � ti

tiþp�1 � ti
Ni;p�1ðtÞ þ

tiþp � t
tiþp � tiþ1

Niþ1;p�1ðtÞ: ð19Þ

Usually we choose p ¼ 4, i.e., cubic splines. From this we build surfaces (or planar grids) and volume-

mappings by tensor products of the form

xðu; vÞ ¼
XN
i¼0

XM
j¼0

pi;j;Ni;p;UðuÞNj;q;V ðvÞ resp: ð20Þ
xðu; v;wÞ ¼
XN
i¼0

XM
j¼0

XL

k¼0

pi;j;k Ni;p;U ðuÞ Nj;q;V ðvÞ Nk;r;W ðwÞ: ð21Þ

The pij resp. pijk are called control points. They are not grid points but can be considered as discrete

approximation of the grid function, see Fig. 7. Due to the development of fast interpolation and



Fig. 7. Control points and evaluation of grid function.
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approximation algorithms [20] discrete, logically Cartesian grids can efficiently be converted to B-spline
form so that existing grid generation tools, for example elliptic or hyperbolic methods can easily be inte-

grated into the current concept [21,22].

4.3. Anisotropic grids

For viscous flows it is useful to preadapt the grids to the boundary layers. Such a grid grading can easily

be incorporated into an existing isotropic grid by applying a stretching function to the original grid, i.e., in

2D one considers

~xðu; vÞ ¼ xðuðuÞ; .ðvÞÞ; ð22Þ
as grid function where u and . are monotonous functions of the unit interval. A collection of appropriate

stretching functions is discussed in [52], good results are generally achieved by the logarithmic function

ueðnÞ ¼ lnð1þ n
ffiffi
e

p
Þ

lnð1þ
ffiffi
e

p
Þ ; ð23Þ

where the parameter e controls the slope of the boundary at the point n ¼ 0. Changing the stretching

function does not require a remeshing. Since the flow solver must be able to handle hanging nodes anyway,

there does not arise the necessity to preserve the continuity of grid lines over the internal block boundaries,

see Fig. 8. This freedom generally simplifies the generation of valid block decompositions enormously.

Additionally the fact that the stretching of the grid cells does not need to protrude into the far field, as is

generally the case when conforming block boundaries are required, improves the convergence rates.
Fig. 8. Adjacent blocks with different parameterizations.
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4.4. Moving grids

For the simulationof fluid–structure interaction the grid generator has to copewith timedependent domain
boundaries. In this section we show how the B-spline representation can be used to accomplish this task

efficiently.

Usually the deformation of the configuration surfaces is provided by an external structural solver based

on finite elements. This data will be converted into B-spline form by means of approximation. Due to the

high approximation order of B-splines only few control points are needed for an appropriate representation

of the geometry, seldom more than 20 in each coordinate direction per block. Since the control points

provide a discrete approximation to the grid function it is possible to apply well known algebraic methods

in order to compute the new positions of the remaining interior control points. These methods only require
minor modifications, which we will demonstrate for the following two examples.

Displacement TFI. The first technique is similar to that proposed in [38,65]. It is based on transfinite

interpolation (TFI) as proposed by Gordon and Hall in [40]. With pni;j;k and pnþ1
i;j;k we denote the position of

the control points at time level tn and the new timelevel tnþ1 respectively. We assume that the deformed

positions of all six faces (the four edges in 2D) of a block are given. In Fig. 9 we have just kept the far field

fixed and connected the vertices at the trailing edge and the leading edge of the profile with the farfield edges

by straight lines. First one computes the displacements of the control points at the block boundaries:

Dpi;j;k ¼ pnþ1
i;j;k � pni;j;k: ð24Þ

Then the displacements of the interior grid points are derived by the well known transfinite interpolation
recursion

Dp1i;j;k ¼ ð1� ui;j;kÞDp0;j;k þ ui;j;kDpN ;j;k; ð25Þ
Dp2i;j;k ¼ Dp1i;j;k þ ð1:0� vi;j;kÞðDpi;0;k � Dp1i;0;kÞ þ vi;j;kðDpi;M ;k � Dp1i;M ;kÞ; ð26Þ

and, finally,

Dpi;j;k ¼ Dp2i;j;k þ ð1:0� wi;j;kÞðDpi;j;0 � Dp2i;j;0Þ þ wi;j;kðDpi;j;L � Dp2i;j;LÞ: ð27Þ

Generally it does not suffice to take ui;j;k ¼ i
N, vi;j;k ¼

j
M, wi;j;k ¼ k

M (this would be the original linear blend

from [40]), because this method may lead to grid folding when it is applied to anisotropic grids. Instead one

should take the arclengths into account. Since the distances of the control points do generally not provide

good approximation of the arclengths, we compute

ui;j;k ¼
R Ui

0
jjxuðu; V j;W kÞjjduR 1

0
jjxuðu; V j;W kÞjjdu

; ð28Þ

where Ui ¼ 1
p�1

Piþp�1

n¼iþ1 un denotes the so-called Greville abscissae with respect the knot vector U , cf. [39].
The vectors vijk, wijk and the abscissae V j, W k are defined analogously. The integrals are approximated by

quadrature rules.

Angle preserving method. An alternative method is applicable in the case when only one boundary of a

block has prescribed deformation (here we take the surface defined by the control points pi;j;0) and the other

boundaries can move freely. For planar discrete grids this has been described in [57]. For each control point

of the surface grid we first compute the translation Dpi;j;0 of the control point and the rotation of the normal

vector at the corresponding Greville abscissae. Let a be the angle between the surface normals nn and nnþ1 at

timelevels n and nþ 1. Then the rotation can be described by an orthogonal matrix Q



Fig. 9. Comparison of different grid deformation strategies. Top: original four-block grid for flow around NACA0012 airfoil; Center:

profile rotated by 30� and grid adjusted with TFI-method; Bottom: grid adjusted using the angle preserving method.
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Q ¼ vvT þ cosðaÞðI � vvTÞ þ sinðaÞ
0 �v3 v2
v3 0 �v1
�v2 v1 0

0
@

1
A; ð29Þ

where v ¼ nnþ1 � nn. a need not be computed but it suffices to evaluate sinðaÞ ¼ jjvjj and cosðaÞ ¼ nnþ1 � nn.
With this displacement and rotation we move the corresponding control grid line in a rigid way:
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prefi;j;k ¼ pi;j;0 þ Dpi;j;0 þ Qðpi;j;k � pi;j;0Þ: ð30Þ

The new grid control points are constructed by blending the reference grid line and the old grid line such

that the points at the opposite surface remain fixed:

pnþ1
i;j;k ¼ ð1:0� bðwi;j;kÞÞprefi;j;k þ bðwi;j;kÞpoldi;j;k: ð31Þ

The blending function b has zero slope at the endpoints to ensure that the grid properties at the

boundary, e.g., orthogonality and wall distances, are maintained and that the grid transition is smooth in

the farfield. A possible choice is the quintic polynomial

bðnÞ ¼ 1� 10n3 þ 15n4 � 6n5: ð32Þ

proposed in [47]. In Fig. 9 this method has been applied to the four-block configuration around the

NACA0012-profile. The wing is rotated by 30� around a rotation center that divides the chord by a ratio of

1:2. First of all the two blocks adjacent to the profile are deformed. From this follows a deformation of the
vertical internal block boundaries. This deformation is the input for the deformation of the other two

blocks.
5. Finite volume method

The occurrence of hanging nodes due to local mesh adaptation poses particular difficulties concerning

the discretization of the governing equations. In the following section we present a finite volume method,

which is capable to operate on meshes of any arbitrary topology. This approach offers a unified way to

incorporate hanging nodes. Its main ingredients will be discussed in detail, including data structures,

realization of spatial second order accuracy, treatment of convective and viscous fluxes as well as time

integration.
5.1. Data structure

The discretization of the governing Eq. (1) is based on a cell centered finite volume scheme. The locally

adapted grid is treated as a fully unstructured mesh, composed of simply connected elements with otherwise

arbitrary topology. This flexibility is crucial for supporting the adaptive concept. Different element types

are processed in a unified manner, rather than being distinguished. In particular, hanging nodes do not

require any special treatment. The data structure of the flow solver is primarily based on the faces of the
grid. A face based data structure has the advantage that there are no limitations on the number of faces,

which can be connected to a cell, see Fig. 10 for an illustration in two space dimensions. The evaluation of

fluxes and their contribution to cells can be efficiently implemented by sweeps over the faces.
5.2. Discretization of inviscid fluxes

The discretization of the inviscid fluxes is based on upwind methods. In the present study, the HLLC

flux-difference splitting due to Batten et al. [12] is employed. For inviscid flows with strong discontinuities,
e.g., hypersonic flows, we give preference to the more robust flux-vector splitting proposed by H€anel and
Schwane [44].

The higher-order extension of the scheme is crucial to obtain accurate solutions of the governing

equations. We choose a polynomial ansatz function for the reconstruction operator Rk
Vi
, which is a trun-



Fig. 10. Collection of fluxes for polygonally bounded control volume in two space dimensions.
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cated Taylor series expansion around the centroid xi of Vi . The reconstruction is said to be k-exact [9], when
Rk
Vi
exactly reconstructs any polynomial P ðxÞ of degree k or less. To obtain second-order accuracy in space,

a linear reconstruction (k ¼ 1) of the primitive flow variables w 2 f.; v; pg is determined:

wðxÞjVi :¼ wi þ ui xð � xiÞT � rwi; x 2 Vi ; ð33Þ

where wi represents the solution at the centroid xi of Vi and ui denotes a limiter function. The local support

Ni of the reconstruction is based on a fixed set of cells, that share a face with Vi (face neighbors). For

unstructured meshes, the least-squares technique [8] and the Green–Gauss method [10] are commonly

employed techniques to approximate the gradient rwi of the quantity in question. The principle of the

least-squares reconstruction is to minimize the error in reconstructing the integral cell averages wj; 8j 2 Ni

of the neighboring cells, that locally support the higher order method:

min
X
j2Ni

AjwðxÞ
���� � wj

����
2
; ð34Þ

where Aj represents the cell-averaging operator

AjwðxÞ :¼
1

Vj
�� ��

Z
Vj

wðxÞdV : ð35Þ

For the linear reconstruction within a cell Vi the system of equations can be written as

Brwi ¼ Dwi; ð36Þ

where
B ¼
Dx1 Dy1 Dz1
..
. ..

. ..
.

DxN DyN DzN

2
64

3
75; Dwi ¼

Dw1

..

.

DwN

0
B@

1
CA; ð37Þ
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with DðdÞj ¼ ðdÞj � ðdÞi, 8j 2 Ni. The usually over-determined system of Eq. (36) is solved in a least squares

sense by using normal equations. Numerical experiments have shown, that the use of normal equations is

sufficient for the considered reconstruction technique.
Alternatively to the least squares method, the gradient rwi can be determined using the divergence

(Green–Gauss) theorem

rwi ¼
1

Cij j

I
oCi

w ndS; ð38Þ

where Ci denotes an auxiliary control volume, which is defined by the centroids of the neighboring cells of

Vi , which support the reconstruction. The Green–Gauss technique is currently applied in two space di-

mensions only.

At local extrema and discontinuities, the reconstruction polynomial may generate new extrema and

therefore cause oscillations in the numerical solution. In order to circumvent this problem, the slope limiter
by Venkatakrishnan [68] is employed.

5.3. Discretization of diffusive fluxes

For the discretization of the diffusive fluxes, the gradients of the velocity vector, rvi, and the temper-

ature, rT , are required at the cell interfaces. The simplest procedure is to compute the gradients of the

quantity in question rw within each cell and to average rw between the two cells that share a face on its

left hand side (rwL) and on its right hand side (rwR), respectively,

rwjface :¼
1

2
rwLð þ rwRÞ: ð39Þ

The gradients rwL and rwR are provided by the (unlimited) reconstruction procedure. This kind of

discretization supports undamped oscillatory modes, that result from an odd–even point decoupling. A

tighter coupling of the solution is obtained by approximating the gradient in the direction lLR ¼ xR � xL,

that connects the centroids of the left and right cell of the face, by the divided difference

ow
olLR

����
face

¼ wR � wL

lLRj j : ð40Þ

Finally, the gradient is expressed by combining Eqs. (39) and (40)

rwjface ¼ rw
��
face

� rw
��
face

� lLR

lLRj j �
wR � wL

lLRj j

� �
lLR

lLRj j ; ð41Þ

whererwjface is the averaged gradient, according to (39). In [35], Deister provides a detailed analysis for this

kind of gradient estimation, with respect to its properties regarding accuracy and positivity on locally

adapted grids.

5.4. Time integration

After having completed the spatial discretization, we obtain a system of ordinary differential equations

o

ot

Z
V ðtÞ

udV þ R uð Þ ¼ 0; ð42Þ

where RðuÞ denotes the residual vector defined by the sum of the discretized fluxes.
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The implicit time integration scheme is suitable for steady as well as unsteady flow simulations. The

governing equations are expressed in semi-discrete form as follows:

bR :¼ unþ1 V nþ1j j � un V nj j
Dt

þ Rðu�; x�Þ ¼ 0: ð43Þ

The vector of state ðdÞ� is defined as ðdÞ� ¼ h � ðdÞnþ1 þ ð1� hÞ � ðdÞn. For steady fluid flow, a first order

accurate implicit Euler time integration method is chosen, with h ¼ 1. For unsteady flows, a second order

time accurate implicit midpoint rule is employed, with h ¼ 0:5. The solution unþ1 of the non-linear system

(43) is determined by a Newton iteration within each physical time step:

bJðuðlÞÞDuðlÞ ¼ � uðlÞ V nþ1j j � uðnÞ V nj j
Dt

� Rð~u;x�Þ; ð44Þ

with

lim
l!1

uðlÞ ¼ unþ1: ð45Þ

The vector of state ~u is defined as ~u ¼ huðlÞ þ ð1� hÞun. DuðlÞ :¼ uðlþ1Þ � uðlÞ denotes the change of the

solution within each Newton step, indicated by the superscript ðlÞ. The initial guess is uð0Þ ¼ un. For sta-

tionary flows we take one Newton iteration per physical time step. The Jacobian of the system of equations
contains contributions of the temporal discretization and of the spatial discretization:

bJðuðlÞÞ ¼ obRðuðlÞÞ
ouðlÞ

¼ V nþ1j j
Dt

Iþ h
oRð~uÞ
o~u

: ð46Þ

The linearization of the convective fluxes is based on a first order accurate method in space. The con-

vective flux functions are linearized by using tools of automatic differentiation, namely by the ADIFOR

software [18]. The exact linearization of the diffusive fluxes requires a larger stencil than the linearization of

the convective fluxes, based on a first order accurate method in space. Consequently, a higher memory

requirement would be necessary. To maintain the matrix graph of the convective flux Jacobians, we in-

troduce a simplified approximation of the face-gradients for purpose of linearization. The projection of the

gradient of interest, rw, in the direction lLR ¼ xR � xL, that connects the centroids of the left and right cell

of the face, is approximated by the finite difference

rwjface �
lLR

lLRj j �
wR � wL

lLRj j : ð47Þ

The gradient components perpendicular to lLR are neglected. The transport coefficients l and j are

frozen for the process of linearization.

The linear system of Eq. (44) is solved by an iterative Krylov subspace method. In the present study, we

employ the GMRES algorithm [64], pre-conditioned by an incomplete LU-factorization. The implemen-

tation of the Newton–Krylov method is based on the PETSc [6] library of Argonne National Laboratory.
6. Numerical results

In the following, various test cases are considered to demonstrate the benefits of the adaptive concept for

a wide range of applications. First, we investigate the inviscid, stationary flow about the NACA0012 airfoil

in transonic Mach number regime, the inviscid hypersonic flow over a double ellipse and the transonic flow

over a swept wing in a channel. To evaluate the method for viscous flows, the laminar flow about the

NACA0012 airfoil and the laminar flow over a flat plate are investigated. Finally, we conclude with the

unsteady, inviscid flow over the NACA0012 airfoil undergoing forced oscillation in pitch.
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6.1. Transonic NACA0012 airfoil

We consider the inviscid, transonic flow about the NACA0012 airfoil at M1 ¼ 0:95, a ¼ 0� (AGARD
reference test case 03 [1]). The far-field boundary is located about 20 chord lengths away from the airfoil.

Standard characteristic boundary conditions are applied at the far-field, where the incoming Riemann

invariant is set by free stream quantities. Computations are initialized on a structured grid consisting of

four blocks with a resolution of 20� 20 cells each. Thirteen cycles of adaptation have been performed with

a maximum refinement level of Lmax ¼ 8. Adaptation has been carried, each time the density residual de-

creased four orders of magnitude. The threshold value for the multiscale analysis is e ¼ 4� 10�2. The flow

pattern downstream of the trailing edge is characterized by a complex shock configuration. Two oblique

shocks are formed at the trailing edge. The remaining supersonic region behind the oblique shocks is closed
by a further normal shock. This configuration is often related to as so-called fish-tail. Fig. 11 presents the

locally adapted grid and the corresponding Mach distribution in the vicinity of the airfoil, after 13 cycles of

adaptation. The grid consists of 55,084 cells. All three shocks are highly resolved by the adaptive grid. The

position of the normal shock is located at x � 2:1721 chord length behind the trailing edge of the airfoil.

Fig. 12 presents a total view of the shock configuration. The oblique shocks extend about 10–12 chord

lengths into the flow domain. The adaptive grid provides high resolution over the complete extent of the

shocks. Such a high shock resolution is not feasible using standard structured grids. Discretization of the

shock region between x 2 ½1; 5�, y 2 ½�10; 10�, by a uniform structured mesh according to a refinement level
L ¼ 8 equals about 29:5� 106 grid cells. A uniform discretization of the complete flow domain according to

L ¼ 8 would result in about 108 cells.

6.2. Hypersonic flow over a double-ellipse

Next, the inviscid, two-dimensional hypersonic flow about a double-ellipse at M1 ¼ 8:15, a ¼ 30� is

considered. It represents a standard test case for flow simulations of reentry vehicles [37]. For the presented
Fig. 11. Partial view of NACA0012 airfoil, M ¼ 0:95, a ¼ 0:0�. Left figure: Computational grid. Right figure: Mach distribution,

Mmin ¼ 0:0, Mmax ¼ 1:45, DM ¼ 0:05.



Fig. 12. Total view of NACA0012 airfoil, M ¼ 0:95, a ¼ 0:0�. Left figure: Computational grid. Right figure: Mach distribution,

Mmin ¼ 0:0, Mmax ¼ 1:45, DM ¼ 0:05.
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computations, the Green–Gauss reconstruction and the H€anel/Schwane flux vector splitting [44] are em-

ployed. The solution is implicitly advanced in time. Five cycles of adaptation are performed with a max-

imum refinement level of Lmax ¼ 5. The mesh is adapted each time the density residual decreased five orders

of magnitude. The threshold value of the adaptation is e ¼ 2:5� 10�2. Fig. 13 presents a partial view of the

computational grid and the corresponding distribution of the Mach number for three different stages of
adaptation, namely for the initial grid, after three and five adaptations, respectively. On the initial mesh, the

detached bow shock is extremely smeared. After five adaptations, the detached bow shock and the canopy

shock are both sharply resolved. Fig. 14 shows a good agreement of the surface pressure distribution after

five adaptations and the results obtained by Gustafsson et al. [37].

6.3. Swept wing in channel

The inviscid, three-dimensional flow over a swept, non-tapered wing in an open channel is investigated.
The aerodynamic profile of the wing is based on the BAC-3-11/RES/30/21 airfoil [56], which has been

selected for the transonic cruise configuration of the collaborative research center SFB401: Modulation of

Flow and Fluid/Structure Interaction at Airplane Wings, RWTH Aachen, Germany [7]. In the computa-

tions presented here, the span b equals the chord length c. The flow conditions are M1 ¼ 0:77; a ¼ 0�; the
sweep angle is c ¼ 34:0�.

Fig. 15 illustrates the present configuration. The domain is bounded by two end-plates, mounted to the

wing, while the remaining domain is open, extending about 20 chord lengths away from the wing in the x, y-
plane. The initial grid consists of four blocks, each with a resolution of 10 cells in the according curvilinear
coordinate directions. Five cycles of adaptation are conducted. The threshold value of the adaptation is

e ¼ 10�2 and the maximum refinement level is Lmax ¼ 6. Fig. 16 presents a perspective view of the Mach



Fig. 13. Inviscid flow about double-ellipse, M1 ¼ 8:15, a ¼ 30�. Upper figures: Computational grids (partial view); Lower figures:

Mach number distribution, Mmin ¼ 0, Mmax ¼ 8:15, DM ¼ 0:15.
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Fig. 14. Surface pressure distribution for inviscid flow about double-ellipse, M1 ¼ 8:15, a ¼ 30�.
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Fig. 16. Swept wing in channel (M ¼ 0:77, a ¼ 0�, c ¼ 34:0�). Mach number distribution on wing surface and computational grid at

inboard wall of channel. Left figure: Solution for initial grid. Right figure: Solution after five adaptations.

Fig. 15. Geometry of swept wing in channel. Cross-section: BAC-3-11/RES/30/21 airfoil.
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number distribution on the upper surface of the wing and the computational grid at the inboard wall of the

channel for the initial configuration and after five adaptations. The adapted mesh consists of 804,877 cells.

The pressure distributions on the upper surface of the wing for two cross-sections, namely at z=b ¼ 0:2 and

0.8 are depicted in Fig. 17. On the initial grid, the solution is extremely smeared, so that no shock can be

identified. The adaptive scheme detects the shock and provides automatically a high resolution of the shock

and of the stagnation areas at the leading edge and at the trailing edge. In spanwise direction, the position

of the shock is shifted towards the leading edge and the after-expansion is more pronounced.

6.4. Laminar flow over NACA0012 airfoil

We consider the laminar flow over the NACA0012 airfoil at M1 ¼ 0:8, a ¼ 10� and a Reynolds number

of Re1 ¼ 500. This testcase was specified as part of a GAMM workshop [24] to assess the accuracy of

Navier–Stokes solvers. The flow field is characterized by a large separation region on the upper surface of

the airfoil.

The initial grid consists of 1600 cells. The far-field boundaries are located approximately 20 chord
lengths away from the airfoil. The first grid spacing off the wall is about 1:5� 10�3. Five cycles of adap-

tation are performed with a maximum refinement level of Lmax ¼ 6. The threshold value of the adaptation is

e ¼ 1:0� 10�2. Fig. 18(a) and 18(b) show the initial grid and the locally adapted mesh after five cycles of



Fig. 18. Laminar flow about the NACA0012 airfoil, M1 ¼ 0:8, a ¼ 10�, Re1 ¼ 500. (a) Initial grid, resolution: 1600 cells; (b) Grid

after five adaptations, resolution: 24,658 cells.
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Fig. 17. Swept wing in channel (M1 ¼ 0:77; a ¼ 0�; c ¼ 34:0�): Pressure distribution on upper surface for two cross-sections, z=b ¼ 0:2

and 0.8. Left figure: Solution for initial grid. Right figure: Solution after five adaptations.
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adaptation. The wake is automatically detected by the adaptation criteria and the resolution of the grid is

adjusted accordingly. The high resolution of the complete wake, extending to the far-field boundary, leads

to a relative large number of 24,658 grid cells. Fig. 19(a) and 19(b) present the Mach number distribution

and the streamlines in vicinity of the airfoil. The recirculation region and the vortex system are clearly to

identify. Table 1 summarizes the aerodynamic coefficients and the location of the separation point xsep on

the upper surface of the airfoil. CL denotes the lift coefficient due to the pressure force, Cp
D the drag due to

pressure, Cf
D the drag due to friction and Ctot

D represents the total drag, that consists of the sum of the drag
due to pressure and friction. The current results obtained after five stages of adaptation (grid 6), as well as

results obtained by Delanaye [36] and Cambier [24], which serve as a reference, are shown. The location of

the separation point agrees well in all cases. The aerodynamic coefficients predicted by the current scheme

(on grid 6) are slightly larger than the ones determined by Delanaye and Cambier.



Table 1

Comparison of aerodynamic coefficients and the location of the separation point for NACA0012 profile, M1 ¼ 0:8, a ¼ 10�,
Re1 ¼ 500

Number of cells xsep CL Cp
D Cf

D Ctot
D

QUADFLOW (Grid 6) 24,658 0.358 0.4458 0.1458 0.1267 0.2726

Delanaye [36] 13,114 0.358 0.4383 0.1452 0.1211 0.2663

Cambier [24] 17,225 0.359 0.4342 – – 0.2656

Fig. 19. Laminar flow around the NACA0012 airfoil after five adaptations, M1 ¼ 0:8, a ¼ 10�, Re1 ¼ 500. (a) Mach number dis-

tribution, Mmin ¼ 0:0, Mmax ¼ 1:1, DM ¼ 0:1. (b) Streamlines.
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6.5. Laminar boundary layer

In the scope of this section, we apply anisotropic adaptation to resolve the boundary layer along a flat

plate. The flow conditions are determined by the Mach number M1 ¼ 0:2 and the Reynolds number

Re1 ¼ 104, based on unit length. The wall is considered as isothermal, with Twall ¼ T1 ¼ 273:0 K. For

purpose of validation, the similarity solution according to Blasius [53] for an incompressible laminar fluid

flow serves as a reference.
The plate extends along the x-axis between x ¼ 0:0 and 6.0, with 100 cells located on the plate itself, see

Fig. 20(a) for a partial view of the initial grid. Upstream of the leading edge, the lower boundary of the

domain is modeled as an inviscid impermeable wall. The grid is clustered about the leading edge in

streamwise direction, measuring a first grid spacing of 10�3. In the y-direction, the initial resolution

comprises only 10 grid points. In the following, nine cycles of adaptation in the y-coordinate direction are

performed, with a highest refinement level permitted of Lmax ¼ 8. The threshold value for the multiscale

analysis is e ¼ 10�2. The locally adapted grid after nine cycles of adaptation is depicted in Fig. 20(b). The

highest refinement level reached during the computation is L ¼ 7, which is located in the vicinity of
the leading edge of the plate. This fact indicates that even in the presence of steep gradients within the

boundary layer, the multiscale analysis converges within the range of the prescribed threshold value i.e.,

the adaptation procedure was not truncated by reaching the maximum permissible refinement level. Fig. 21

shows a good agreement between the computed skin friction coefficient along the plate after nine adap-

tations and the theoretical solution, according to Blasius.



Fig. 20. Computational grids for laminar flow over flat plate, M1 ¼ 0:2, Re1 ¼ 104.

Re
0 5000 10000 15000 20000

0

0.01

0.02
Blasius solution
QUADFLOW

fc

Fig. 21. Distribution of the skin friction coefficient for laminar flow over flat plate after nine adaptations, M1 ¼ 0:2, Re1 ¼ 104.
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6.6. Oscillating NACA0012 airfoil

As a last example we show the inviscid, unsteady transonic flow at M1 ¼ 0:755 about the NACA0012

airfoil undergoing forced oscillation in pitch

a ¼ 0:016�þ 2:51� sinðxt þ uÞ; ð48Þ

about the quarter-chord. The reduced frequency is k ¼ xc=jv1j ¼ 0:1628. This test case was experimentally

investigated by Landon [51]. For the numerical simulation, a phase shift of u ¼ �90� is introduced, so that
for t ¼ 0 the motion of the airfoil is accelerated but has no rotational velocity. We start the computation

with a steady state solution about the initial airfoil position. For time integration the implicit mid-point rule



Fig. 22. Hysteresis curves for oscillating NACA0012 airfoil. Left: lift coefficient, right: moment coefficient.
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is used. The physical timestep is chosen to correspond to a maximum CFL-number within the computa-

tional domain of about CFL ¼ 50. As a result each oscillation cycle is resolved by 5100 time steps. The

unsteady residual of the Newton iteration is reduced four orders of magnitude within each time step. Grid
adaption is performed after each timestep using a threshold value of e ¼ 10�3. Maximum refinement level is

L ¼ 6 resulting in about 15,000–18,000 grid cells depending on the phase of the oscillation. For the grid

deformation the angle preserving method described in Section 4.4 is employed. Fig. 23 shows the isobars of

the flow field and the adaptive grid for three different stages of the motion. The flow undergoes strong

variations in time. During the upward motion of the airfoil ( _a > 0), a supersonic region is formed on the

upper surface, which is closed by a shock. During the downward motion, the supersonic region on

the upper surface breaks down and a supersonic region on the lower surface develops. Fig. 22 presents the

hysteresis curves of the lift coefficient CL and the moment coefficient CM for the fourth cycle of oscillation.
The discrepancies with respect to the experiments of Landon [51] are often observed in the literature

[3,11,49,54].

6.7. Remarks on CPU times

In the previous examples we have decided to use mesh size estimates as measure for the efficiency of the

adaptive method exclusively. This is just due to the fact that in case of steady state computations the

computational overhead caused by the adaptation can be neglected. After each adaptation the flow solver is
called to compute a nearly converged solution on the new grid. This typically requires several hundred

timesteps and more than 98% of the overall computational time. Matters are different in case of insta-

tionary problems. Here the grid has to be adapted after each time step. In Table 2 we compare the execution

times spent in the main modules of the solver for the pitching airfoil testcase, that has been described in the

previous section.

The multiscale transform itself can be realized efficiently using an appropriate memory management,

that in particular supports the inserting and removing of cells. For this reason specialized hashing

strategies have been developed in the C++ template library igpm_t_lib, see [60]. A significant contri-
bution to the execution time of this testcase stems from the exact evaluation of curvilinear cell volumes

and cell centers that is more expensive than the formulas for hexahedrons usually employed in standard



Fig. 23. Time evolution of pressure distribution and adaptive grid for flow around oscillating NACA0012 profile. Upper figures:

aðt1Þ ¼ 0:82�; _aðt1Þ < 0; Center: aðt2Þ ¼ �2:24�; _aðt2Þ < 0; Lower figures: aðt3Þ ¼ 1:82�; _aðt3Þ > 0. pmin ¼ 56; 600 Pa; pmax ¼ 146; 600 Pa;

Dp ¼ 4500 Pa.
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finite volume solvers. These quantities have to be recomputed before every timestep. In case of non-

moving grids this contribution is less important, since only the data of newly inserted cells have to be

computed.



Table 2

CPU-times for one cycle of oscillation, i.e. 5100 timesteps, on a Linux-PC with 2.4 GHz Intel Xeon processor

Module Time (s) Time (%)

Flow solver 37,791 69.2

Multiscale analysis 4982 9.1

Grid deformation 2341 4.2

Evaluation of geometry 9426 17.3
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7. Conclusion and outlook

We have presented the still intermediate state of development of the new flow solver QUADFLOW that

integrates dynamic adaptation, mesh generation and finite volume discretization. Its main features have

been illustrated by numerous steady and unsteady computations governing a wide class of flow problems

including transonic and hypersonic flows, laminar flows as well as moving boundaries. Without a-priori

knowledge of the solution all physical relevant effects (shocks, boundary layers, etc.) are detected and
appropriately resolved.

The present state of the implementation still lacks important features. We conclude with some remarks

on further developments which are currently being performed within the Collaborative Research Center

SFB 401 Flow Modulation and Fluid–Structure Interaction at Airplane Wings, RWTH Aachen.

Parallelization. So far the solver is not yet fully parallelized. This is a severe shortcoming, in particular,

for 3D computations. The time-dependency of the problems considered here makes the parallelization

inherently difficult, since local adaption may result in suboptimal load balancing, even if the initial domain

partitioning has been chosen appropriately. Currently, our approach is to adapt the geometric block-
structure of the grid dynamically to serve the needs of the parallelization.

Time adaptivity. Grid adaptation is currently performed only in space but not in time. However, we have

been able to incorporate a local time stepping in the spirit of adaptive mesh refinement (AMR), see [13,14],

into the adaptive multiscale concept. Recent results make us believe that we can significantly improve the

efficiency of QUADFLOW in case of non-stationary problems.

Hybrid grid refinement. In the current version we can perform in each grid block either isotropic or

anisotropic grid refinement. So far the refinement strategy has to be specified blockwise a-priori by the

user. However there are applications such as an interaction between a shock and a boundary layer where
in one grid block both refinement strategies are locally needed. For this purpose we are currently de-

veloping a grid adaptation tool based on a multiscale analysis that admits for isotropic and anisotropic

grid refinement.

Physical Model. The ultimate goal of the project is the investigation of fluid–structure interactions at

airplane wings. Up to now, we only investigated moving boundaries with a prescribed deformation. In order

to account for aeroelastic effects we will incorporate a FEM code and couple it with QUADFLOW. Several

coupling strategies have already been investigated, see [55].
Appendix A. Multivariate wavelets

Here we summarize the wavelet construction for a logically Cartesian grid hierarchy. In this case the

extension from univariate wavelets to multivariate wavelets is straightforward. To illustrate this we con-

sider a uniform dyadic partition of ½0; 1�d, i.e.,

Vj;k ¼ ½2�j k1; 2�j ðk1 þ 1Þ� � . . .� ½2�j kd ; 2�j ðkd þ 1Þ�;
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for k 2 Ij :¼ f0; . . . ; 2j � 1gd. Then the refinement sets are determined by Mj;k ¼ f2kþ e; e 2 Eg with

E :¼ f0; 1gd. In this shift–invariant case, multivariate wavelets can be constructed by tensor products. For

this purpose, we introduce the convention ~wj;k;0 :¼ ~uj;k and
~wj;k;1 ¼ ~wj;k where ~uj;k and

~wj;k are the univariate
box function and the univariate box wavelet, respectively, see Section 3.1.2. Then the multivariate analogue

is determined by

~uj;kðxÞ :¼
Yd
i¼1

~wj;ki ;0ðxiÞ; �wj;k;eðxÞ :¼
Yd
i¼1

~wj;ki ;eiðxiÞ; ðA:1Þ

where e 2 E� :¼ f0; 1gd n f0g denotes different wavelet types corresponding to the cell Vj;k. These functions
are shown in Fig. 24. By means of the two-scale relations for the Haar basis (7)–(9) we derive from the

definition of the multivariate functions (A.1) similar relations

~uj;k ¼
X
i2E

2�d ~ujþ1;2kþi;
�wj;k;e ¼

X
i2E

2�d ð�1Þi�e ~ujþ1;2kþi; e 2 E�; ðA:2Þ

and

~ujþ1;2kþi ¼ ~uj;k þ
X
e2E�

ð�1Þi�e �wj;k;e; i 2 E: ðA:3Þ
Fig. 24. Box function and box wavelets on ½0; 1�2.
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As has been proven in [41], p. 77, the relations (A.2) and (A.3) are equivalent.

As explained before, in order to get a better compression by exploiting higher order smoothness we have

to raise the order of vanishing polynomial moments. The basic idea is to modify the box wavelet �wj;k;e by
some coarse grid box functions, leading to the ansatz

~wj;k;e :¼ �wj;k;e þ
X
l2Le

j;k

lj;el;k ~uj;l; e 2 E�; ðA:4Þ

with parameters lj;el;k that are yet to be determined. Here the stencil Le
j;k � Ij denotes the cells Vj;l in the

neighborhood of the cell Vj;k. Then the parameters lj;el;k are chosen such that

hp; ~wj;k;eiX ¼ 0; ðA:5Þ

holds for all polynomials p of degree less than an arbitrary but fixed number M . The details of the con-

struction can be found in [41,59].

By means of (A.2) we can rewrite (A.4) as

~wj;k;e ¼
X
r2M1

j;k

mj;e
r;k ~ujþ1;r; e 2 E�:

Introducing the details by functionals of a function u 2 L1ðXÞ, i.e., dj;k;e :¼ hu; ~wj;k;eiX we derive two-scale

relations similar to (7) and (8)

ûj;k ¼
X
r2Mj;k

mj;0
r;k ûjþ1;r; dj;k;e ¼

X
r2M1

j;k

mj;e
r;k ûjþ1;r; e 2 E�; ðA:6Þ

for certain mask coefficients mj;e
r;k and index set M1

j;k � Ijþ1. By means of (A.3) and (A.4) the corresponding

inverse two-scale transformation reads

ûjþ1;k ¼
X
r2G0

j;k

gj;0r;k ûj;r þ
X
e2E�

X
r2G1

j;k

gj;er;k dj;r;e; ðA:7Þ

which is similar to (10). Here gj;er;k denotes the filter coefficients and G0
j;k, G

1
j;k � Ij the index sets corre-

sponding to the support of the box function and the wavelets, respectively.

Finally we would like to comment on general grid hierarchies. In this case it is also possible to construct

box wavelets. Similar to (A.4) it is possible to modify these box wavelets such that we obtain wavelets with

higher vanishing moments. For details we refer to [59].
References

[1] Test cases for inviscid flow field methods. AGARD-AR-211, 1985.

[2] R. Abgrall, Multiresolution analysis on unstructured meshes: Applications to CFD, in: Chetverushkin et al. (Eds.),

Experimentation, Modelling and Computation in Flow, Turbulence and Combustion, John Wiley & Sons, 1997, pp. 147–156.

[3] W.K. Anderson, J.L. Thomas, C.L. Rumsey, Extension and applications of flux-vector splitting to unsteady calculations on

dynamic meshes, AIAA Paper 87-1152 (1987).

[4] F. Arandiga, R. Donat, A. Harten, Multiresolution based on weighted averages of the hat function I: Linear reconstruction

techniques, SIAM J. Numer. Anal. 36 (1) (1998) 160–203.

[5] F. Arandiga, R. Donat, A. Harten, Multiresolution based on weighted averages of the hat function II: Non-linear reconstruction

techniques, SIAM J. Sci. Comput. 20 (3) (1999) 1053–1093.

[6] S. Balay, K. Buschelman, W. Gropp, D. Kaushik, M. Knepley, L.C. McInnes, B.F. Smith, H. Zhang, PETSc users manual,

Technical Report ANL-95/11-Revision 2.1.5, Argonne National Laboratory, 2002.



F. Bramkamp et al. / Journal of Computational Physics 197 (2004) 460–490 489
[7] J. Ballmann (Ed.), Flow modulation and fluid–structure-interaction at airplane wings, Numerical Notes on Fluid Mechanics, vol.

84, Springer Verlag, 2003.

[8] T.J. Barth. A 3-D Upwind Euler Solver for Unstructured Meshes, AIAA Paper 91-1548-CP, 1991.

[9] T.J. Barth, P.O. Frederickson, Higher order solution of the euler equations on unstructured grids using quadratic reconstruction,

AIAA Paper 90-0013 (1990).

[10] T.J. Barth, D.C. Jaspersen, The design and application of upwind schemes on unstructured meshes, AIAA Paper 89-0366 (1989).

[11] J.T. Batina, Implicit flux-split Euler schemes for unsteady aerodynamic analysis involving unstructured dynamic meshes, AIAA J.

29 (11) (1991) 1836–1843.

[12] P. Batten, M.A. Leschziner, U.C. Goldberg, Average-state Jacobians and implicit methods for compressible viscous and turbulent

flows, J. Comp. Phys. 137 (1997) 38–78.

[13] M. Berger, P. Colella, Local adaptive mesh refinement for shock hydrodynamics, J. Comp. Phys. 82 (1989) 64–84.

[14] M. Berger, J. Oliger, Adaptive mesh refinement for hyperbolic partial differential equations, J. Comp. Phys. 53 (1984) 484–512.

[15] B. Bihari, A. Harten, Application of generalized wavelets: An adaptive multiresolution scheme, J. Comp. Appl. Math 61 (1995)

275–321.

[16] B. Bihari, A. Harten, Multiresolution schemes for the numerical solution of 2-D conservation laws I, SIAM J. Sci. Comput. 18 (2)

(1997) 315–354.

[17] B.L. Bihari, D.K. Ota, Z. Liu, S.V. Ramakrishnan, The multiresolution method on general unstructured meshes, AIAA paper

(AIAA 2001-2553), 2001.

[18] C. Bischof, A. Carle, P. Khademi, A. Mauer, ADIFOR 2.0: Automatic Differentiation of Fortran 77 Programs, IEEE Computat.

Sci. Eng. 3 (3) (1996) 18–32.

[19] W. B€ohm, G. Farin, J. Kahmann, A survey of curve in surface methods in CAGD, Computer Aided Geometric Design 1 (1984) 1–

60.

[20] K.-H. Brakhage, High quality mesh generation and sparse representation using B-Splines, in: B.K. Soni, J.F. Thompson, J.

H€auser, P.Eiseman (Eds.), Proceedings of the Seventh International Conference on Numerical Grid Generation in Computational

Field Simulations, Chateau Whistler Resort, British Columbia, 2000, pp. 753–762.

[21] K.-H. Brakhage, Ph. Lamby, CAGD tools for high quality grid generation and sparse representation, in: B.K. Soni, J.F.

Thompson, J. H€auser, P.Eiseman (Eds.), Proceddings of the Ninth International Conference on Numerical Grid Generation in

Computational Field Simulations, Waikiki Beach, Hawaii, 2002, pp. 599–608.

[22] K.-H. Brakhage, S. M€uller, Algebraic-hyperbolic grid generartion with precise control of intersection of angles, Int. J. Numer.

Meth. Fluids 33 (2000) 89–123.

[23] F. Bramkamp, B. Gottschlich-M€uller, M. Hesse, Ph. Lamby, S. M€uller, J. Ballmann, K.-H. Brakhage, W. Dahmen, H -adaptive

multiscale schemes for the compressible Navier–Stokes equations – polyhedral discretization, data compression and mesh

generation, in: J. Ballmann (Ed.), Flow Modulation and Fluid–Structure-Interaction at Airplane Wings, Numerical Notes on

Fluid Mechanics, vol. 84, Springer, 2003, pp. 125–204.

[24] M.O. Bristeau, R. Glowinski, J. Periaux, H. Viviand (Eds.), Notes on Numerical Fluid Mechanics, vol. 18, Vieweg, 1987.

[25] J.M. Carnicer, W. Dahmen, J.M. Pena, Local decomposition of refinable spaces and wavelets, Appl. Comput. Harmon. Anal. 3

(1996) 127–153.

[26] G. Chiavassa, R. Donat, Point value multiresolution for 2D compressible flows, SIAM J. Sci. Comput. 23 (3) (2001) 805–823.

[27] G. Chiavassa, R. Donat, A. Marquina, Fine–mesh numerical simulations for 2D Riemann problems with a multilevel scheme, in:

G. Warnecke, H. Freist€uhler (Eds.), Hyperbolic Problems: Theory, Numerics, Applications, Birkh€auser, 2002, pp. 247–256.
[28] A. Cohen, Wavelets in Numerical Analysis, Handbook of Numerical Analysis, Elsevier, Amsterdam, 1998.

[29] A. Cohen, I. Daubechies, J. Feauveau, Bi-orthogonal bases of compactly supported wavelets, Comm. Pure Appl. Math. 45 (1992)

485–560.

[30] A. Cohen, N. Dyn, S.M. Kaber, M. Postel, Multiresolution finite volume schemes on triangles, J. Comp. Phys. 161 (2000) 264–

286.

[31] A. Cohen, S.M. Kaber, S. M€uller, M. Postel, Fully adaptive multiresolution finite volume schemes for conservation laws, Math.

Comp. 72 (241) (2003) 183–225.

[32] A. Cohen, S.M. Kaber, M. Postel, Multiresolution analysis on triangles: application to gas dynamics, in: G. Warnecke, H.

Freist€uhler (Eds.), Hyperbolic Problems: Theory, Numerics, Applications, Birkh€auser, 2002, pp. 257–266.

[33] W. Dahmen, B. Gottschlich–M€uller, S. M€uller, Multiresolution schemes for conservation laws, Numer. Math. 88 (3) (2000) 399–

443.

[34] C. de Boor, A Practical Guide To Splines, Springer, 1978.

[35] F.J. Deister, Selbstorganisierendes hybrid-kartesisches Netzverfahren zur Berechnung von Str€omungen um komplexe Konfig-

urationen, PhD thesis, VDI, 2002.

[36] M. Delanaye, Polynomial Reconstruction Finite Volume Schemes for the Compressible Euler and Navier–Stokes Equations on

Unstructured Adaptive Grids, PhD thesis, Universit�e de Li�ege, 1996.

[37] J.A. D�esid�eri, R. Glowinski, J. P�eriaux (Eds.), Hypersonic Flows for Reentry Problems, vol. 2, Springer Verlag, 1991.



490 F. Bramkamp et al. / Journal of Computational Physics 197 (2004) 460–490
[38] L. Dubuc, F. Cantariti, M. Woodgate, B. Gribben, K.J. Badcock, B.E. Richards, A grid deformation technique for unsteady flow

computations, Int. J. Numer. Meth. Fluids 32 (2000) 285–311.

[39] G. Farin, Curves and Surfaces in Computer Aided Geometric Design – A practical guide, second ed., Academic Press, 1990.

[40] W.J. Gordon, C.A. Hall, Construction of curvilinear coordinate systems and applications to mesh generation, Int. J. Numer.

Meth. Eng. 7 (1973) 461–477.

[41] B. Gottschlich–M€uller, Multiscale Schemes for Conservation Laws, PhD thesis, RWTH Aachen, 1998.

[42] B. Gottschlich–M€uller, S. M€uller, Adaptive finite volume schemes for conservation laws based on local multiresolution

techniques, in: M. Fey, R. Jeltsch (Eds.), Hyperbolic Problems: Theory, Numerics, Applications, Birkh€auser, 1999, pp. 385–394.

[43] B. Gottschlich–M€uller, S. M€uller, On multi-scale concepts for multi-dimensional conservation laws, in: W. Hackbusch, G. Wittum

(Eds.), Numerical Treatment of Multi-scale Problems, Vieweg, 1999, pp. 119–133.

[44] D. H€anel, R. Schwane, An implicit flux-vector splitting scheme for the computation of viscous hypersonic flow, AIAA Paper 89-

0274 (1989).

[45] A. Harten, Multiresolution algorithms for the numerical solution of hyperbolic conservation laws, Comm. Pure Appl. Math. 48

(12) (1995) 1305–1342.

[46] A. Harten, Multiresolution representation of data: A general framework, SIAM J. Numer. Anal. 33 (3) (1996) 1205–1256.

[47] M. Hesse, G. Britten, J. Ballmann. A multi-block grid deformation algorithm for aeroelastic analysis, in: B.K. Soni, J.F.

Thompson, J. H€auser, P. Eiseman (Eds.), Proceedings of the Seventh International Conference on Numerical Grid Generation in

Computational Field Simulations, Chateau Whistler Resort, British Columbia, 2000, pp. 161–170.

[48] P. Houston, J.A. Mackenzie, E. S€uli, G. Warnecke, A posteriori error analysis for numerical approximations of friedrichs systems,

Numer. Math. 82 (1999) 433–470.

[49] R.P. Koomullil, B.K. Soni, Flow simulation using generalized static and dynamic grids, AIAA J. 37 (12) (1999) 1551–1557.

[50] D. Kr€oner, M. Ohlberger, A posteriori error estimates for upwind finite volume schemes for nonlinear conservation laws in multi

dimensions, Math. Comp. 69 (229) (1999) 25–39.

[51] R.H. Landon. NACA0012. Oscillatory and transient pitching, pages 3.1–3.25, Compendium of Unsteady Aerodynamic

Measurements, Data Set 3, AGARD Report 702, 1983.

[52] V.D. Liseikin, Grid Generation Methods, Scientific Computation, Springer, 1999.

[53] L.G. Loitsianski, Laminare Grenzschichten, Akademie Verlag, Berlin, 1967.

[54] H. Luo, J.D. Baum, R. L€ohner, An accurate, fast, matrix-free implicit method for computing unsteady flows on unstructured

grids, AIAA Paper 99-0937 (1999).

[55] R. Massjung, J. Hurka, J. Ballmann, W. Dahmen, On well-posedness and modelling for nonlinear aeroelasticity, in: J. Ballmann

(Ed.), Flow Modulation and Fluid–Structure-Interaction at Airplane Wings, Numerical Notes on Fluid Mechanics, vol. 84,

Springer, 2003, pp. 227–248.

[56] I.R.M. Moir, Measurements on a Two-Dimensional Aerofoil with High-Lift Devices, AGARD-AR-303 2 (1994) 58–59.

[57] S.A. Morton, R.B. Melville, M.R. Visbal, Accuracy and coupling issues of aeroelastic Navier–Stokes solutions on deforming

meshes, J. Aircraft 35 (5) (1998) 798–805.

[58] S. M€uller, Adaptive multiresolution schemes, in: B. Herbin (Ed.), Finite Volumes for Complex Applications, Hermes Science,

Paris, 2002, pp. 119–136.

[59] S. M€uller, Adaptive multiscale schemes for conservation laws, in: Lecture Notes on Computational Science and Engineering, vol.

27, Springer, 2002.

[60] S. M€uller, A. Voss, A Manual for the Template Class Library igpm_t_lib, IGPM–Report 197, RWTH Aachen, 2000.

[61] L. Piegl, W. Tiller, The NURBS book, second ed., Springer, 1997.

[62] A. Rault, G. Chiavassa, R. Donat, Shock-vortex interactions at high Mach numbers, J. Comp. Phys. 19 (2003) 347–371.

[63] O. Roussel, K. Schneider, A. Tsigulin, H. Bockhorn, A conservative fully adaptive multiresolution algorithm for parabolic PDEs,

J. Comp. Phys. 188 (2) (2003) 493–523.

[64] Y. Saad (Ed.), Iterative Methods for Sparse Linear Systems, PWS, Boston, 1996.

[65] S.P. Spekreijse, B.B. Prananta, J.C. Kok, A Simple, Robust and Fast Algorithm to Compute Deformations of Multi-block

Structured Grids, Technical Report NLR-TP-2002-105, National Aerospace Laboratory NLR, 2002.

[66] D. Hempel, T. Sonar, V. Hannemann, Dynamic adaptivity and residual control in unsteady compressible flow computation,

Math. Comp. Modell. 20 (1994) 201–213.

[67] E. S€uli, T. Sonar, A dual graph-norm refinement indicator for finite volume approximations of the Euler equations, Numer. Math.

78 (1998) 619–658.

[68] V. Venkatakrishnan, Convergence to steady state solutions of the Euler equations on unstructured grids with limiters, J. Comp.

Phys. 118 (1995) 120–130.


	An adaptive multiscale finite volume solver for unsteady and steady state flow computations
	Introduction
	Governing equations
	Grid adaptation concept
	Multiscale setting
	Hierarchy of meshes
	Motivation: A univariate example
	Multiscale transformation

	Grid adaptation

	Mesh generation
	Parametric meshes
	B-spline-representations
	Anisotropic grids
	Moving grids

	Finite volume method
	Data structure
	Discretization of inviscid fluxes
	Discretization of diffusive fluxes
	Time integration

	Numerical results
	Transonic NACA0012 airfoil
	Hypersonic flow over a double-ellipse
	Swept wing in channel
	Laminar flow over NACA0012 airfoil
	Laminar boundary layer
	Oscillating NACA0012 airfoil
	Remarks on CPU times

	Conclusion and outlook
	Multivariate wavelets
	References


